Absorption Properties of Simply Fabricated All-Metal Mushroom Plasmonic Metamaterials Incorporating Tube-Shaped Posts for Multi-Color Uncooled Infrared Image Sensor Applications

نویسندگان

  • Shinpei Ogawa
  • Daisuke Fujisawa
  • Hisatoshi Hata
  • Masafumi Kimata
چکیده

Wavelength-selective infrared (IR) absorbers have attracted considerable interest due to their potential for a wide range of applications. In particular, they can be employed as advanced uncooled IR sensors that identify objects through their radiation spectra. Herein, we propose a mushroom plasmonic metamaterial absorber incorporating tube-shaped metal posts (MPMAT) for use in the long-wavelength IR (LWIR) region. The MPMAT design consists of a periodic array of thin metal micropatches connected to a thin metal plate via tube-shaped metal posts. Both the micropatches and posts can be constructed simultaneously as a result of the tube-shaped structure of the metal post structure; thus, the fabrication procedure is both simple and low cost. The absorption properties of these MPMATs were assessed both theoretically and experimentally, and the results of both investigations demonstrated that these devices exhibit suitable levels of LWIR absorption regardless of the specific tube-shaped structures employed. It was also found to be possible to tune the absorption wavelength by varying the micropatch width and the inner diameter of the tube-shaped metal posts, and to obtain absorbance values of over 90%. Focal plane array structures based on such MPMATs could potentially serve as high-performance, low-cost, multi-spectral uncooled IR image sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficul...

متن کامل

Detection Wavelength Control of Uncooled Infrared Sensors Using Two-Dimensional Lattice Plasmonic Absorbers †

Wavelength-selective uncooled infrared (IR) sensors are highly promising for a wide range of applications, such as fire detection, gas analysis and biomedical analysis. We have recently developed wavelength-selective uncooled IR sensors using square lattice two-dimensional plasmonic absorbers (2-D PLAs). The PLAs consist of a periodic 2-D lattice of Au-based dimples, which allow photons to be m...

متن کامل

Polarization-selective uncooled infrared sensor with asymmetric two- dimensional plasmonic absorber

A polarization-selective uncooled infrared (IR) sensor was developed based on an asymmetric twodimensional plasmonic absorber (2-D PLA). The 2-D PLA has an Au-based 2-D periodic dimple structure, where photons can be manipulated by spoof surface plasmon polaritons. Asymmetry was introduced into the 2-D PLA to realize a polarization selective function. Numerical investigations demonstrate that a...

متن کامل

Aluminum plasmonic metamaterials for structural color printing.

We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer f...

متن کامل

Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating

A perfect ultra-narrow band infrared metamaterial absorber based on the all-metal-grating structure is proposed. The absorber presents a perfect absorption efficiency of over 98% with an ultra-narrow bandwidth of 0.66 nm at normal incidence. This high efficient absorption is contributed to the surface plasmon resonance. Moreover, the surface plasmon resonance-induced strong surface electric fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016